2007 PEER Seismic Design Competition

Essential Earthquake Engineering in 45 minutes
COMPETITION BACKGROUND

- Held annual at the National EERI Meeting
 - The 2007 was held at the Universal Hilton in LA
 - The 2008 will be held in New Orleans
COMPETITION BACKGROUND

- Economic Performance Evaluation
 + Rentable Area in Building as Revenue
 + Land and Structural Cost (footprint and weight)
 + Seismic damage cost as a function of performance
 - Structural damage cost as a function displacement between roof and ground
 - Equipment damage cost as a function of roof acceleration
2007 TEAM AND MODEL

- 5 Team Members
 - Joe Henry
 - Josh Lehr
 - Sarah Martin
 - Beth McNair
 - Jeremy Mikkelsen
2007 TEAM AND MODEL

- Cost sensitivity analysis
- Maximize total floor area
- Simple geometric architecture
- Lightweight
- Super stiff in order to be on the left side of response spectrum
EARTHQUAKE ENGINEERING

- Basic SDOF System without damping

\[\frac{k}{2} \]

\[m \]

\[\frac{k}{2} \]
\[T = \frac{2\pi}{\omega} \]

\[
\omega = \sqrt{\frac{k}{m}}
\]
Stiffness and Mass drive the natural frequency of structures

\[\omega = \sqrt{\frac{k}{m}} \]
Seismic Design Competition

RESPONSE SPECTRUM

- Heart of structural dynamics
- Defines maximum response of simple structures of specified inputs

Ground Motions

Forces

FBD

Acceleration, Velocity, and Position as a function of time

Take the maximum value and plot verses natural frequency
Northridge
Displacement Component of Response Spectrum
(%5 Damping)
Northridge

Velocity Component of Response Spectrum

(%5 Damping)

Max Velocity (meters/sec)

Period T, (sec)
Northridge
Acceleration Component of Response Spectrum
(%5 Damping)
EARTHQUAKE ENGINEERING

Natural Frequency
Stiffness & Mass

Damping

Displacement P, (meters)
Period T, (sec)
Spectral Acceleration vs. Period

- Kobe
- El Centro
- Northridge

Acceleration (m/s²)

Period (s)
Effective Mass is the mass of the upper 50%
+ 10.25 lbs = 0.027 lb sec^2 / in

Stiffness is computed/estimated
+ 30 lbs/in

Thus \(\omega = 0.03 \) and
+ \(T = 0.005 \) seconds
NORTHRIDGE PREDICTIONS

- $T=0.005 \text{ seconds} \Rightarrow$
- Displacement = .002 m, Acceleration = 12 m/s2
NORTH RIDGE TESTING

- Peak Roof Acceleration $1.5125g = 14.8 \text{ m/s}^2$
- Peak Relative Displacement $0.3042 \text{ in} = 0.008 \text{ m}$
<table>
<thead>
<tr>
<th>Team</th>
<th>Building Cost</th>
<th>Cost Rank</th>
<th>Income</th>
<th>Income Rank</th>
<th>Seismic Cost</th>
<th>Seismic Cost Rank</th>
<th>Net Revenue</th>
<th>Net Revenue Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregon State University</td>
<td>$298,018</td>
<td>4</td>
<td>$1,755,205</td>
<td>3</td>
<td>$501,300</td>
<td>1</td>
<td>$955,886</td>
<td>1</td>
</tr>
<tr>
<td>San Jose State University</td>
<td>$298,358</td>
<td>5</td>
<td>$1,666,023</td>
<td>10</td>
<td>$562,170</td>
<td>2</td>
<td>$805,496</td>
<td>2</td>
</tr>
<tr>
<td>University of California, Davis</td>
<td>$319,150</td>
<td>8</td>
<td>$1,667,200</td>
<td>9</td>
<td>$837,588</td>
<td>3</td>
<td>$510,463</td>
<td>3</td>
</tr>
<tr>
<td>University of Hawaii</td>
<td>$275,690</td>
<td>2</td>
<td>$1,724,609</td>
<td>6</td>
<td>$978,018</td>
<td>4</td>
<td>$470,902</td>
<td>4</td>
</tr>
<tr>
<td>Washington University</td>
<td>$268,048</td>
<td>1</td>
<td>$1,720,444</td>
<td>7</td>
<td>$1,000,387</td>
<td>5</td>
<td>$452,010</td>
<td>5</td>
</tr>
<tr>
<td>University of Buffalo</td>
<td>$338,940</td>
<td>12</td>
<td>$1,776,632</td>
<td>2</td>
<td>$1,026,192</td>
<td>6</td>
<td>$411,500</td>
<td>6</td>
</tr>
<tr>
<td>University of Washington</td>
<td>$326,143</td>
<td>10</td>
<td>$1,813,309</td>
<td>1</td>
<td>$1,245,010</td>
<td>7</td>
<td>$242,156</td>
<td>7</td>
</tr>
<tr>
<td>University of California, San Diego</td>
<td>$299,088</td>
<td>6</td>
<td>$1,726,092</td>
<td>5</td>
<td>$1,313,499</td>
<td>9</td>
<td>$113,506</td>
<td>8</td>
</tr>
<tr>
<td>New Jersey Institute of Technology</td>
<td>$321,397</td>
<td>9</td>
<td>$1,624,834</td>
<td>13</td>
<td>$1,255,181</td>
<td>8</td>
<td>$48,256</td>
<td>9</td>
</tr>
<tr>
<td>University of California, Berkeley</td>
<td>$296,648</td>
<td>3</td>
<td>$1,658,578</td>
<td>11</td>
<td>$1,361,610</td>
<td>11</td>
<td>$320</td>
<td>10</td>
</tr>
<tr>
<td>University of Texas, Austin</td>
<td>$304,088</td>
<td>7</td>
<td>$1,632,467</td>
<td>12</td>
<td>$1,329,626</td>
<td>10</td>
<td>$(1,246)</td>
<td>11</td>
</tr>
<tr>
<td>Cal Poly, San Luis Obispo</td>
<td>$334,688</td>
<td>11</td>
<td>$1,734,688</td>
<td>4</td>
<td>$1,448,378</td>
<td>13</td>
<td>$(48,378)</td>
<td>12</td>
</tr>
<tr>
<td>University of California, Irvine</td>
<td>$345,188</td>
<td>13</td>
<td>$1,596,797</td>
<td>14</td>
<td>$1,424,934</td>
<td>12</td>
<td>$(173,325)</td>
<td>13</td>
</tr>
<tr>
<td>Florida A & M University</td>
<td>$544,688</td>
<td>14</td>
<td>$1,676,978</td>
<td>8</td>
<td>$1,487,499</td>
<td>14</td>
<td>$(355,208)</td>
<td>14</td>
</tr>
</tbody>
</table>
LESSONS LEARNED

- Vertical Discontinuity
- Connections
- Member Continuity
Seismic Design Competition 2007
LESSONS LEARNED

- Properly size the damping system
- Full scale tests are good too
LESSONS LEARNED – TEST TO FAILURE

- Localized support at loading locations
- Vibration Effects
- Redundancy in support (lateral and gravity) was good
QUESTIONS?

DON’T FORGET TO SIGN UP IF INTERESTED FOR NEXT YEAR’S TEAM!